# PERFORMING UNDER PRESSURE



# The brain is an incredibly effective, learning computer.

Some parts of the brain are hardwired and automated.

**How Hard Disk Drives Work** Hard Disk Drives (HDDs) use spinning disks (platters) to magnetically store information. Read/Write heads Platters (disks)

Some parts are like apps; the more apps you have open, the slower your cognition.



# THE BRAIN IS HIGHLY EFFICIENT AND PREFERS ORGANIZATION.





- Commonly-used information is stored where it can be easily accessed (desk top).
- Less-used information is stored in a junk drawer or seldom-used computer file.
- ASAP, habits are moved to and stored in the hard drive; this clears space for the working brain.

#### IT'S IMPORTANT TO KNOW:

WE HAVE TWO BRAINS, AND EACH SERVES A DIFFERENT PURPOSE.



#### **LIMBIC SYSTEM:**

AUTOMATED; SUB-CONSCIOUS
IMPULSIVE (and EMOTIONAL)
INCLUDES AN EFFECTIVE EARLY WARNING SYSTEM

#### **PRE-FRONTAL CORTEX:**

CRITICAL THINKING AND JUDGMENT CONTROLS IMPULSES
CUMBERSOME IN AN EMERGENCY

The LIMBIC SYSTEM does whaaat?





- It's primitive.
- It's super fast.
- It's a hyper-paranoid car alarm:

It's constantly "on guard" for potential threats. It secretes stress chemicals when stimulated.

- It's excellent at "remembering" patterns. (Is that your amygdala you're feeling?)
- In an emergency, it is given priority.

# What is the PRE-FRONTAL CORTEX?

- It is an amazing computer that learns from its past.
- It is good at analyzing; good at critical thinking. This is where decision making happens.
- It represses urges and helps keeps the limbic system under control
- It reaches full maturity by around age 25.



### BOTH HAVE DOWN SIDES



# When the pre-frontal cortex is highly stressed, it ...

- ✓ Becomes bogged down,
- ✓ Cannot handle multi-tasking,
- ✓ Isn't able to recall information well, and

✓ Decision making is significantly affected.

Commonly, people lose situational awareness.

Tunnel vision sometimes happens.



# When the limbic system is over-stressed, it has three typical responses...

ONE ... TWO ...





## AND THREE ...



How would you perform under pressure?



What do most people do in an Emergency?

# TYPICAL PERFORMANCE (of the average person) UNDER PRESSURE



Research suggests that upwards of 85 percent of people will have cognitive and/or performance deficit in an emergency.

#### **DURING AN EMERGENCY ...**

The amygdala warns the system even before a message reaches the cortex.



# During an emergency ...

The pre-frontal cortex gets busy and instantly scans for a memory or impactful experience that can provide useful data.



It is essential to upload the brain with quality "hits" that can be easily retrieved.

# During an emergency ...

The cortex hates adding more stress or workload to an already stressful situation. (Being over-busy leads to cognitive error).

Consequently, to limit cognitive output, people will:

- Speak their native language;
- Avoid attempting new or unfamiliar behaviors;
- Follow their habitual routines, etc.



# During an emergency:

(common responses)





- People gather "stuff."
- People have a need to be with others (most loathe isolation) and they (and primates) benefit by touching each other.
- People check in with those around them and seek information; if they don't get it, they check in with others, start rumors, etc.
- People are apt to do what those around them do; they are very open to suggestions.

#### WHY DOES THIS MATTER?

1) We underestimate how the stress will affect our brains in a real emergency.

- 2) We overestimate our cognitive abilities (including our ability to multi-task).
- 3) We are often surprised by "something." This adds to stress and reduces performance.



Don't gamble that all will go well. Instead, change the odds.

#### SPECIFIC STEPS THAT CAN HELP



- Simple checklists provide grounding.
- Breathing techniques can effectively reduce heart rate and BP.
- Knowing about bystander stress can minimize surprises.
- Use of case studies and close calls allows you to imagine what you might do in the situation. (Think through each step in detail.)
- Taking time to stop, breathe, and take a drink of water has been shown to reduce stress.

#### RESEARCH SHOWS...

We perform as we practice ...



Note: It is very rare that we will perform better under pressure than we perform in practice.

## **CONSEQUENTLY...**

1) Hold yourself to high standards,

2) And make your practices real!





#### REALISM MATTERS

Research has shown ... talking is a fairly ineffective method for improving performance; showing is marginally effective; having students do leads to better performance/retention.



Research shows that the brain is best able to retrieve information when it is asked to recall info under similar circumstances.

## Things that add stress ...

- Performing new skill
- Performing in front of others
- Being evaluated
- Surprises
- Gaps in knowledge
- Lack of familiarity
- Noise
- Overstimulation (task saturation)
- Working alone
- Time pressures
- Limited resources



## Things that can reduce stress.

- Knowledge
- Familiarity
- Routine
- Checklists
- Quality leadership
- Working with a partner
- Quiet, soothing voice
- Breathing
- Laughter



#### AND KEEP IN MIND ...



Practice without corrective feedback often allows bad habits to solidify.

## Good luck!



May all your emergencies go well.

#### REFERENCES

Survival Psychology by John Leach, 1994.

The Unthinkable: Who Survives When Disaster Strikes ... and Why by Amanda Ripley, 2009.

Thinking Fast and Slow by Daniel Kahneman, 2011.

Nerve: Poise Under Pressure, Serenity Under Stress, and the Brave New Science of Fear and Cool by Taylor Clark, 2011.

## REFERENCES, cont.

Peak: Secrets From the New Science of Expertise by Anders Ericsson and Robert Pool

Performing Under Pressure: The Science of Doing Your Best When it Matters Most by Hendrie Weisinger and J.P. Pawliw-Fry

Visible Learning and the Science of How We Learn by John Hattie and Gregory Yates

How We Learn by Benedict Carey